Package: chromatographR (via r-universe)

August 22, 2024

```
Type Package
Title Chromatographic Data Analysis Toolset
Version 0.7.1
Maintainer Ethan Bass <ethanbass@gmail.com>
Description Tools for high-throughput analysis of HPLC-DAD/UV
      chromatograms (or similar data). Includes functions for
      preprocessing, alignment, peak-finding and fitting, peak-table
      construction, data-visualization, etc. Preprocessing and
      peak-table construction follow the rough formula laid out in
      alsace (Wehrens, R., Bloemberg, T.G., and Eilers P.H.C., 2015.
      <a href="https://doi:10.1093/bioinformatics/btv299">doi:10.1093/bioinformatics/btv299</a>. Alignment of chromatograms
      is available using parametric time warping (ptw) (Wehrens, R.,
      Bloemberg, T.G., and Eilers P.H.C. 2015.
      <doi:10.1093/bioinformatics/btv299>) or variable penalty
      dynamic time warping (VPdtw) (Clifford, D., & Stone, G. 2012.
      <doi:10.18637/jss.v047.i08>). Peak-finding uses the algorithm
      by Tom O'Haver
      <https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm>.
      Peaks are then fitted to a gaussian or exponential-gaussian
      hybrid peak shape using non-linear least squares (Lan, K. &
      Jorgenson, J. W. 2001. <doi:10.1016/S0021-9673(01)00594-5>).
      See the vignette for more details and suggested workflow.
License GPL (>= 2)
URL https://ethanbass.github.io/chromatographR/,
      https://github.com/ethanbass/chromatographR/
BugReports https://github.com/ethanbass/chromatographR/issues/
Depends R (>= 3.5.0)
Imports caTools, chromConverter, dynamicTreeCut, fastcluster, Formula,
      fs, graphics, grDevices, lattice, methods, minpack.lm,
      parallel, ptw, purrr, scales, stats, utils, VPdtw
Suggests cowplot, ggplot2, knitr, openxlsx, pbapply, plotly, pvclust,
      reticulate, rmarkdown, rsvg, spelling, testthat (>= 3.0.0),
      vdiffr
```

2 Contents

VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
Language en-US
LazyData true
LazyDataCompression xz
RoxygenNote 7.3.0
Repository https://ethanbass.r-universe.dev
RemoteUrl https://github.com/ethanbass/chromatographR
RemoteRef HEAD
RemoteSha b24f669d3c93bec0c82cf5b5a38ed9a745910769

Contents

chromatographR-package	3
attach_metadata	4
attach_ref_spectra	5
boxplot.peak_table	6
cluster_spectra	6
combine_peaks	8
correct_peaks	9
-	10
filter_peaks	13
<u> </u>	14
find_peaks	15
fit_peaks	17
get_peaks	19
get_peaktable	21
<i>C</i> →	24
mirror_plot	25
normalize_data	
pk_tab	27
plot.peak_list	28
plot.peak_table	29
plot.ptw_list	
plot_all_spectra	
plot_chroms	33
plot_spectrum	34
preprocess	36
reshape_chroms	38
reshape_peaktable	39
Sa	40
Sa_pr	40
Sa_warp	41

chroma	tographR-package																		3
	scan_chrom subset.peak_table write_peaktable															 			42
Index																			45
chro	matographR-package	e chro	ma	tog	rai	nhk	?							_	_	 	 		

Description

Chromatographic Data Analysis Toolset

Details

Tools for high-throughput analysis of HPLC-DAD/UV chromatograms (or similar data). Includes functions for preprocessing, alignment, peak-finding and fitting, peak-table construction, data-visualization, etc. Preprocessing and peak-table construction follow the rough formula laid out in alsace (Wehrens, R., Bloemberg, T.G., and Eilers P.H.C., 2015. doi:10.1093/bioinformatics/btv299). Alignment of chromatograms is available using parametric time warping (ptw) (Wehrens, R., Bloemberg, T.G., and Eilers P.H.C. 2015. doi:10.1093/bioinformatics/btv299) or variable penalty dynamic time warping (VPdtw) (Clifford, D., & Stone, G. 2012. doi:10.18637/jss.v047.i08). Peak-finding relies on the algorithm suggested by Tom O'Haver in his Pragmatic Introduction to Signal Processing. Peaks are then fitted to a gaussian or exponential-gaussian hybrid peak shape using non-linear least squares (Lan, K. & Jorgenson, J. W. 2001. doi:10.1016/S00219673(01)005945). More details on package usage and a suggested workflow can be found in the vignette.

Author(s)

Ethan Bass

See Also

Useful links:

- https://ethanbass.github.io/chromatographR/
- https://github.com/ethanbass/chromatographR/
- Report bugs at https://github.com/ethanbass/chromatographR/issues/

4 attach_metadata

attach_metadata

Attach experimental metadata

Description

Attaches sample metadata to 'peak_table' object. Metadata should be provided as a data.frame object. One of the columns in the supplied metadata must match exactly the row names of the peak table.

Usage

```
attach_metadata(peak_table, metadata, column)
```

Arguments

peak_table A 'peak_table' object.

metadata A 'data.frame' containing the sample metadata.

column The name of the column in your metadata object containing the sample names.

Sample names must match the row names of peak_table\$tab.

Value

A peak_table object with attached metadata in the \$sample_meta slot.

Author(s)

Ethan Bass

See Also

```
get_peaktable normalize_data
```

Examples

```
data(pk_tab)
path <- system.file("extdata", "Sa_metadata.csv", package = "chromatographR")
meta <- read.csv(path)
pk_tab <- attach_metadata(peak_table = pk_tab, metadata = meta, column="vial")</pre>
```

attach_ref_spectra 5

attach_ref_spectra

Attach reference spectra

Description

Gathers reference spectra and attaches them to peak_table object. Reference spectra are defined either as the spectrum with the highest intensity (max.int) or as the spectrum with the highest average correlation to the other spectra in the peak_table (max.cor).

Usage

```
attach_ref_spectra(peak_table, chrom_list, ref = c("max.cor", "max.int"))
```

Arguments

peak_table Peak table from get_peaktable.

chrom_list A list of chromatograms in matrix format (timepoints x wavelengths). If no

 $argument \ is \ provided \ here, \ the \ function \ will \ try \ to \ find \ the \ chrom_list \ object$

used to create the provided peak_table.

ref What criterion to use to select reference spectra. Current options are maximum

correlation (max.cor) or maximum signal intensity (max.int).

Value

A peak_table object with reference spectra attached in the \$ref_spectra slot.

Author(s)

Ethan Bass

See Also

```
get_peaks get_peaktable
```

Examples

```
data(pk_tab)
pk_tab <- attach_ref_spectra(pk_tab, ref="max.int")
pk_tab <- attach_ref_spectra(pk_tab, ref = "max.cor")</pre>
```

6 cluster_spectra

boxplot.peak_table Make boxplot from peak table.

Description

The function can take multiple response variables on the left hand side of the formula (separated by +). In this case, a separate boxplot will be produced for each response variable.

Usage

```
## S3 method for class 'peak_table'
boxplot(x, formula, ...)
```

Arguments

```
x A peak_table objectformula A formula object... Additional arguments to boxplot
```

Examples

```
data(pk_tab)
path <- system.file("extdata", "Sa_metadata.csv", package = "chromatographR")
meta <- read.csv(path)
pk_tab <- attach_metadata(peak_table = pk_tab, metadata = meta, column="vial")
boxplot(pk_tab, formula=V11 ~ trt)</pre>
```

cluster_spectra

Cluster peaks by spectral similarity.

Description

Function to cluster peaks by spectral similarity. A representative spectrum is selected for each peak in the provided peak table and used to construct a distance matrix based on spectral similarity (pearson correlation) between peaks. Hierarchical clustering with bootstrap resampling is performed on the resulting correlation matrix to classify peaks into by their spectral similarity.

Usage

```
cluster_spectra(
  peak_table,
  peak_no = c(5, 100),
  alpha = 0.95,
  nboot = 1000,
  plot_dend = TRUE,
```

cluster_spectra 7

```
plot_spectra = TRUE,
  verbose = getOption("verbose"),
  save = FALSE,
  parallel = TRUE,
  max.only = FALSE,
  output = c("pvclust", "clusters"),
  ...
)
```

Arguments

peak_table Peak table from get_peaktable. peak_no Minimum and maximum thresholds for the number of peaks a cluster may have. alpha Confidence threshold for inclusion of cluster. Number of bootstrap replicates for pvclust. nboot plot_dend Logical. If TRUE, plots dendrogram with bootstrap values. plot_spectra Logical. If TRUE, plots overlapping spectra for each cluster. Logical. If TRUE, prints progress report to console. verbose Logical. If TRUE, saves pvclust object to current directory. save parallel Logical. If TRUE, use parallel processing for pvclust. max.only Logical. If TRUE, returns only highest level for nested dendrograms. output What to return. Either clusters to return list of clusters, pvclust to return pvclust object, or both to return both items.

Details

. . .

A representative spectrum is selected for each peak in the provided peak table and used to construct a distance matrix based on spectral similarity (pearson correlation) between peaks. It is suggested to attach representative spectra to the peak_table using attach_ref_spectra. Otherwise, representative spectra are obtained from the chromatogram with the highest absorbance at lambda max.

Hierarchical clustering with bootstrap resampling is performed on the resulting correlation matrix, as implemented in pvclust. Finally, bootstrap values can be used to select clusters that exceed a certain confidence threshold as defined by alpha. Clusters can also be filtered by the minimum and maximum size of the cluster using the argument peak_no. If max_only is TRUE, only the largest cluster in a nested dendrogram of clusters meeting the confidence threshold will be returned.

Value

Returns clusters and/or pvclust object according to the value of the output argument.

• If output = clusters, returns a list of S4 cluster objects.

Additional arguments to pvclust.

- If output = pvclust, returns a pvclust object.
- If output = both, returns a nested list containing [[1]] the pvclust object, and [[2]] the list of S4 cluster objects.

8 combine_peaks

The cluster objects consist of the following components:

- peaks: a character vector containing the names of all peaks contained in the given cluster.
- pval: a numeric vector of length 1 containing the bootstrap p-value (au) for the given cluster.

Note

- Users should be aware that the clustering algorithm will often return nested clusters. Thus, an individual peak could appear in more than one cluster.
- It is highly suggested to use more than 100 bootstraps if you run the clustering algorithm on real data even though we use nboot = 100 in the example to reduce runtime. The authors of pvclust suggest nboot = 10000.

Author(s)

Ethan Bass

References

R. Suzuki & H. Shimodaira. 2006. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. *Bioinformatics*, **22(12)**:1540-1542. doi:10.1093/bioinformatics/btl117.

Examples

```
data(pk_tab)
data(Sa_warp)
pk_tab <- attach_ref_spectra(pk_tab, Sa_warp, ref="max.int")
cl <- cluster_spectra(pk_tab, nboot=100, max.only = FALSE, save = FALSE, alpha = .97)</pre>
```

combine_peaks

Combine peaks

Description

Utility function to combine duplicate peaks in peak table, i.e. peaks that were integrated at more than one wavelength or component. Specify tolerance (tol) for retention time matching and minimum spectral correlation (min.cor) for a match.

Usage

```
combine_peaks(
  peak_table,
  tol = 0.01,
  min.cor = 0.9,
  choose = "max",
  verbose = getOption("verbose")
)
```

correct_peaks 9

Arguments

peak_table	Peak table from get_peaktable.
tol	Tolerance for matching retention times (maximum retention time difference). Defaults to .01.
min.cor	Minimum spectral correlation to confirm a match. Defaults to 0.9.
choose	If max will retain peak with highest intensity. Otherwise, the first column in the data.frame will be retained.
verbose	Logical. Whether to print status to the console.

Value

A peak table similar to the input peak table, but with duplicate columns combined according to the specified criteria.

Author(s)

Ethan Bass

See Also

```
get_peaks
```

Examples

```
data(pk_tab)
data(Sa_warp)
pk_tab <- attach_ref_spectra(pk_tab)
combine_peaks(pk_tab, tol = .02, min.cor = .9)</pre>
```

correct_peaks

Correct peak positions according to a ptw warping model

Description

Corrects retention time differences using parametric time warping as implemented in ptw.

Usage

```
correct_peaks(peak_list, mod_list, chrom_list, match_names = TRUE)
```

10 correct_rt

Arguments

peak_list A 'peak_list' object created by get_peaks, containing a nested list of peak ta-

bles where the first level is the sample, and the second level is the spectral wavelength. Every component is described by a matrix where every row is one peak, and the columns contain information on retention time, peak width (FWHM),

peak width, height, and area.

mod_list A list of ptw models.

chrom_list List of chromatograms supplied to create ptw models.

match_names Logical. Whether to actively match the names of the peak_list to the list of

models (mod_list). Defaults to TRUE.

Details

Once an appropriate warping model has been established, corrected retention times can be predicted for each peak. These are stored in a separate column in the list of peak tables.

Value

The input list of peak tables is returned with extra columns containing the corrected retention time.

Note

This function is adapted from getPeakTable function in the alsace package by Ron Wehrens.

Author(s)

Ron Wehrens, Ethan Bass

See Also

correct_rt

correct_rt Correct retention time

Description

Aligns chromatograms using one of two algorithms, according to the value of alg: either parametric time warping, as implemented in ptw, or variable penalty dynamic time warping, as implemented in VPdtw. The init.coef and n.traces arguments apply only to ptw warping, while penalty and maxshift apply only to vpdtw warping.

correct_rt 11

Usage

```
correct_rt(
  chrom_list,
 lambdas,
 models = NULL,
 reference = "best",
 alg = c("ptw", "vpdtw"),
 what = c("corrected.values", "models"),
 init.coef = c(0, 1, 0),
 n.traces = NULL,
 n.zeros = 0,
 scale = FALSE,
 trwdth = 200,
 plot_it = FALSE,
 penalty = 5,
 maxshift = 50,
 verbose = getOption("verbose"),
 show_progress = NULL,
 c1 = 2,
)
```

Arguments

chrom_list	List of chromatograms in matrix format.
lambdas	Select wavelengths to use by name.
models	List of models to warp by. The models provided here (if any) must match the algorithm selected in alg.
reference	Index of the sample that is to be considered the reference sample.
alg	algorithm to use: parametric time warping (ptw) or variable penalty dynamic time warping (vpdtw).
what	What to return: either the 'corrected.values' (useful for visual inspection) or the warping 'models' (for further programmatic use).
init.coef	Starting values for the optimization.
n.traces	Number of traces to use.
n.zeros	Number of zeros to add.
scale	Logical. If true, scale chromatograms before warping.
trwdth	width of the triangle in the WCC criterion.
plot_it	Logical. Whether to plot alignment.
penalty	The divisor used to calculate the penalty for VPdtw. The warping penalty is calculated by dividing the dilation by this number. Thus, a higher number will produce a lower penalty and be more permissive, while a lower number will produce a higher penalty and allow less warping. Defaults to 5.
maxshift	Integer. Maximum allowable shift for VPdtw. Defaults to 50.

12 correct_rt

verbose	Whether to print verbose output.
show_progress	Logical. Whether to show progress bar. Defaults to TRUE if pbapply is installed. Currently works only for ptw alignments.
cl	Argument to pblapply or mclapply. Either an integer specifying the number of clusters to use for parallel processing or a cluster object created by makeCluster. Defaults to 2. On Windows integer values will be ignored.
•••	Optional arguments for the ptw function. The only argument that cannot be changed is warp.type: this is always equal to "global".

Value

A list of warping models or a list of warped absorbance profiles, depending on the value of the what argument.

Note

Adapted from correctRT function in the alsace package by Ron Wehrens.

Author(s)

Ethan Bass

References

- Clifford, D., Stone, G., Montoliu, I., Rezzi, S., Martin, F. P., Guy, P., Bruce, S., & Kochhar, S. 2009. Alignment using variable penalty dynamic time warping. *Analytical chemistry*, **81**(3):1000-1007. doi:10.1021/ac802041e.
- Clifford, D., & Stone, G. 2012. Variable Penalty Dynamic Time Warping Code for Aligning Mass Spectrometry Chromatograms in R. *Journal of Statistical Software*, **47(8)**:1-17. doi:10.18637/jss.v047.i08.
- Eilers, P.H.C. 2004. Parametric Time Warping. Anal. Chem., 76:404-411. doi:10.1021/ac034800e.
- Wehrens, R., Bloemberg, T.G., and Eilers P.H.C. 2015. Fast parametric time warping of peak lists. *Bioinformatics*, **31**:3063-3065. doi:10.1093/bioinformatics/btv299.
- Wehrens, R., Carvalho, E., Fraser, P.D. 2015. Metabolite profiling in LC–DAD using multivariate curve resolution: the alsace package for R. *Metabolomics*, **11**:143-154. doi:10.1007/s1130601406835.

See Also

```
ptw, correct_peaks, VPdtw
```

Examples

```
data(Sa_pr)
warping.models <- correct_rt(Sa_pr, what = "models", lambdas=c(210))
warp <- correct_rt(chrom_list = Sa_pr, models = warping.models)</pre>
```

filter_peaks 13

Description

Utility function to remove peaks from a peak list, e.g. because their intensity is too low. Currently one can filter on peak height, peak area, standard deviation, and/or retention time.

Usage

```
filter_peaks(peak_list, min_height, min_area, min_sd, max_sd, min_rt, max_rt)
```

Arguments

peak_list	A peak_list object, consisting of a nested list of peak tables, where the first level is the sample, and the second level is the spectral component. Every component is described by a matrix where every row is one peak, and the columns contain information on retention time, full width at half maximum (FWHM), peak width, height, and area.
min_height	Minimum peak height.
min_area	Minimum peak area.
min_sd	Minimal standard deviation.
max_sd	Maximum standard deviation.
min_rt	Minimum retention time.
max_rt	Maximum retention time.

Value

A peak list similar to the input, with all rows removed from that do not satisfy the specified criteria.

Author(s)

Ron Wehrens, Ethan Bass

See Also

```
get_peaks, filter_peaktable
```

14 filter_peaktable

 $filter_peaktable$ F

Filter peak table

Description

Utility function to remove peaks from peak table, e.g. because their intensity is too low. Currently one can filter on mean or median peak intensity, or retention time.

Usage

```
filter_peaktable(
  peak_table,
  rts,
  min_rt,
  max_rt,
  min_value,
  lambda,
  what = c("median", "mean", "max"),
  tol = 0
)
```

Arguments

A peak_table object from get_peaktable. peak_table Vector of retention times to include in the peak table. rts Minimum retention time to include in the peak table. min_rt Maximum retention time to include in the peak table. max_rt min_value Minimal cutoff for summarized peak intensity. lambda Component(s) to include in peak table (e.g. wavelengths if you are using HPLC-DAD/UV). Whether to summarize intensities using mean, median, or max. what Tolerance for matching of retention times to rts. tol

Value

A peak table similar to the input, with all columns removed from the peak table that do not satisfy the specified criteria.

Author(s)

Ethan Bass

See Also

```
get_peaktable, filter_peaks
```

find_peaks 15

Examples

```
data(pk_tab)
pk_tab <- filter_peaktable(pk_tab, min_rt = 10, max_rt = 16)</pre>
```

find_peaks

Find peaks in chromatographic profile

Description

Find peaks in chromatographic profile.

Usage

```
find_peaks(
   y,
   smooth_type = c("gaussian", "box", "savgol", "mva", "tmva", "none"),
   smooth_window = 0.001,
   slope_thresh = 0,
   amp_thresh = 0,
   bounds = TRUE
)
```

Arguments

У	Signal (as a numerical vector).
smooth_type	Type of smoothing. Either gaussian kernel ("gaussian"), box kernel ("box"), savitzky-golay smoothing ("savgol"), moving average ("mva"), triangular moving average ("tmva"), or no smoothing ("none").
smooth_window	Smoothing window. Larger values of this parameter will exclude sharp, narrow features. If the supplied value is between 0 and 1, window will be interpreted as a proportion of points to include. Otherwise, the window will be the absolute number of points to include in the window. (Defaults to .001).
slope_thresh	Minimum threshold for slope of the smoothed first derivative. This parameter filters on the basis of peak width, such that larger values will exclude broad peaks from the peak list. (Defaults to \emptyset).
amp_thresh	Minimum threshold for peak amplitude. This parameter filters on the basis of peak height, such that larger values will exclude small peaks from the peak list. (Defaults to \emptyset).
bounds	Logical. If TRUE, includes peak boundaries in data.frame. (Defaults to TRUE).

16 find_peaks

Details

Find peaks by looking for zero-crossings in the smoothed first derivative of the signal (y) that exceed the specified slope threshold (slope_thresh). Additionally, peaks can be filtered by supplying a minimal amplitude threshold (amp_thresh), filtering out peaks below the specified height. Smoothing is intended to prevent the algorithm from getting caught up on local minima and maxima that do not represent true features. Several smoothing options are available, including "gaussian", box kernel ("box"), savitzky-golay smoothing ("savgol"), moving average ("mva"), triangular moving average ("tmva"), or no smoothing ("none").

It is recommended to do pre-processing using the preprocess function before peak detection. Overly high chromatographic resolution can sometimes cause peaks to be split into multiple segments. In this case, it is recommended to increase the smooth_window or reduce the resolution along the time axis by adjusting the dim1 argument during preprocessing.

Value

If bounds == TRUE, returns a data.frame containing the center, start, and end of each identified peak. Otherwise, returns a numeric vector of peak centers. All locations are expressed as indices.

Note

The find_peaks function is adapted from MATLAB code included in Prof. Tom O'Haver's Pragmatic Introduction to Signal Processing.

Author(s)

Ethan Bass

References

O'Haver, Tom. Pragmatic Introduction to Signal Processing: Applications in scientific measurement. https://terpconnect.umd.edu/~toh/spectrum/ (Accessed January, 2022).

See Also

```
fit_peaks, get_peaks
```

Examples

```
data(Sa_pr)
find_peaks(Sa_pr[[1]][,"220"])
```

fit_peaks 17

fit_peaks	Fit chromatographic peaks to an exponential-gaussian hybrid or gaussian profile
	sian profile

Description

Fit peak parameters using exponential-gaussian hybrid or gaussian function.

Usage

```
fit_peaks(
    x,
    lambda,
    pos = NULL,
    sd.max = 50,
    fit = c("egh", "gaussian", "raw"),
    max.iter = 1000,
    estimate_purity = TRUE,
    noise_threshold = 0.001,
    ...
)
```

Arguments

X	A chromatogram in matrix format.						
lambda	Wavelength to fit peaks at.						
pos	Locations of peaks in vector y. If NULL, find_peaks will run automatically to find peak positions.						
sd.max	Maximum width (standard deviation) for peaks. Defaults to 50.						
fit	Function for peak fitting. (Currently exponential-gaussian hybrid egh, gaussian and raw settings are supported). If raw is selected, trapezoidal integration will be performed on raw data without fitting a peak shape. Defaults to egh.)						
max.iter	Maximum number of iterations to use in nonlinear least squares peak-fitting. (Defaults to 1000).						
estimate_purity	estimate_purity						
	Logical. Whether to estimate purity or not. Defaults to TRUE.						
noise_threshold							
	Noise threshold. Input to get_purity.						
	Additional arguments to find_peaks.						

Details

Peak parameters are calculated by fitting the data to a gaussian or exponential-gaussian hybrid curve using non-linear least squares estimation as implemented in nlsLM. Area under the fitted curve is then estimated using trapezoidal approximation.

18 fit_peaks

Value

The fit_peaks function returns a matrix, whose columns contain the following information about each peak:

rt Location of the peak maximum.

start Start of peak (only included in table if bounds = TRUE).

end End of peak (only included in table if bounds = TRUE).

sd The standard deviation of the peak.

tau τ parameter (only included in table if fit = "egh").

FWHM The full width at half maximum.

height Peak height. area Peak area.

r. squared The R-squared value for linear fit of the model to the data.

purity The spectral purity of peak as assessed by get_purity.

Again, the first five elements (rt, start, end, sd and FWHM) are expressed as indices, so not in terms of the real retention times. The transformation to "real" time is done in function get_peaks.

Note

The fit_peaks function is adapted from Dr. Robert Morrison's DuffyTools package as well as code published in Ron Wehrens' alsace package.

Author(s)

Ethan Bass

References

- * Lan, K. & Jorgenson, J. W. 2001. A hybrid of exponential and gaussian functions as a simple model of asymmetric chromatographic peaks. *Journal of Chromatography A* **915**:1-13. doi:10.1016/S00219673(01)005945.
- * Naish, P. J. & Hartwell, S. 1988. Exponentially Modified Gaussian functions A good model for chromatographic peaks in isocratic HPLC? *Chromatographia*, /bold26: 285-296. doi:10.1007/BF02268168.

See Also

```
find_peaks, get_peaks
```

Examples

```
data(Sa_pr)
fit_peaks(Sa_pr[[1]], lambda = 220)
```

get_peaks 19

get_peaks Get peak list.

Description

Finds and fits peaks and extracts peak parameters from a list of chromatograms at the specified wavelengths.

Usage

```
get_peaks(
  chrom_list,
  lambdas,
  fit = c("egh", "gaussian", "raw"),
  sd.max = 50,
  max.iter = 100,
  time.units = c("min", "s", "ms"),
  estimate_purity = FALSE,
  noise_threshold = 0.001,
  show_progress = NULL,
  cl = 2,
  collapse = FALSE,
  ...
)
```

Arguments

chrom_list	A list of profile matrices, each of the same dimensions (timepoints \times wavelengths).					
lambdas	Character vector of wavelengths to find peaks at.					
fit	What type of fit to use. Current options are exponential-gaussian hybrid (egh), gaussian or raw. The raw setting performs trapezoidal integration directly on the raw data without fitting a peak shape.					
sd.max	Maximum width (standard deviation) for peaks. Defaults to 50.					
max.iter	Maximum number of iterations for non-linear least squares in fit_peaks.					
time.units	Units of sd, FWHM, area, and tau (if applicable). Options are minutes ("min"), seconds ("s"), or milliseconds ("ms").					
estimate_purity						
	Logical. Whether to estimate purity or not. Defaults to FALSE. (If TRUE, this will slow down the function significantly).					
noise_threshold	d					
	Noise threshold. Argument to get_purity.					
show_progress	Logical. Whether to show progress bar. Defaults to TRUE if pbapply is installed.					

20 get_peaks

cl Argument to pblapply or mclapply. Either an integer specifying the number of

clusters to use for parallel processing or a cluster object created by makeCluster. Defaults to 2. On Windows integer values will be ignored.

collapse Logical. Whether to collapse multiple peak lists per sample into a single list

when multiple wavelengths (lambdas) are provided.

.. Additional arguments to find_peaks. Arguments provided to find_peaks can be used to fine-tune the peak-finding algorithm. Most importantly, the smooth_window should be increased if features are being split into multiple bins. Other argu-

ments that can be used here include smooth_type, slope_thresh, and amp_thresh.

Details

Peaks are located by finding zero-crossings in the smoothed first derivative of the specified chromatographic traces (function find_peaks). At the given positions, an exponential-gaussian hybrid (or regular gaussian) function is fit to the signal using fit_peaks according to the value of fit. Finally, the area is calculated using trapezoidal approximation.

Additional arguments can be provided to find_peaks to fine-tune the peak-finding algorithm. For example, the smooth_window can be increased to prevent peaks from being split into multiple features. Overly aggressive smoothing may cause small peaks to be overlooked.

The standard deviation (sd), full-width at half maximum (FWHM), tau tau, and area are returned in units determined by time.units. By default, the units are in minutes. To compare directly with 'ChemStation' integration results, the time units should be in seconds.

Value

The result is an S3 object of class peak_list, containing a nested list of data.frames containing information about the peaks fitted for each chromatogram at each of wavelengths specified by the lamdas argument. Each row in these data.frames is a peak and the columns contain information about various peak parameters:

- rt: The retention time of the peak maximum.
- start: The retention time where the peak is estimated to begin.
- end: The retention time where the peak is estimated to end.
- sd: The standard deviation of the fitted peak shape.
- tau The value of parameter τ . This parameter determines peak asymmetry for peaks fit with an exponential-gaussian hybrid function. (This column will only appear if fit = egh.
- FWHM: The full-width at half maximum.
- height: The height of the peak.
- area: The area of the peak as determined by trapezoidal approximation.
- r. squared The coefficient of determination (R^2) of the fitted model to the raw data. (Note: this value is calculated by fitting a linear model of the fitted peak values to the raw data. This approach is statistically questionable, since the models are fit using non-linear least squares. Nevertheless, it can still be useful as a rough metric for "goodness-of-fit").
- purity The peak purity.

get_peaktable 21

Note

The bones of this function are adapted from the getAllPeaks function authored by Ron Wehrens (though the underlying algorithms for peak identification and peak-fitting are not the same).

Author(s)

Ethan Bass

References

- Lan, K. & Jorgenson, J. W. 2001. A hybrid of exponential and gaussian functions as a simple model of asymmetric chromatographic peaks. *Journal of Chromatography A* **915**:1-13. doi:10.1016/S00219673(01)005945.
- Naish, P. J. & Hartwell, S. 1988. Exponentially Modified Gaussian functions A good model for chromatographic peaks in isocratic HPLC? *Chromatographia*, 26: 285-296. doi:10.1007/ BF02268168.
- O'Haver, Tom. Pragmatic Introduction to Signal Processing: Applications in scientific measurement. https://terpconnect.umd.edu/~toh/spectrum/ (Accessed January, 2022).
- Wehrens, R., Carvalho, E., Fraser, P.D. 2015. Metabolite profiling in LC–DAD using multivariate curve resolution: the alsace package for R. *Metabolomics* 11:143-154. doi:10.1007/s1130601406835.

See Also

```
find_peaks, fit_peaks
```

Examples

```
data(Sa_pr)
pks <- get_peaks(Sa_pr, lambdas = c('210'), sd.max=50, fit="egh")</pre>
```

get_peaktable

Convert peak list into an ordered peak table.

Description

Returns a peak_table object. The first slot contains a matrix of intensities, where rows correspond to samples and columns correspond to aligned features. The rest of the slots contain various meta-data about peaks, samples, and experimental settings.

22 get_peaktable

Usage

```
get_peaktable(
  peak_list,
  chrom_list,
  response = c("area", "height"),
  use.cor = NULL,
  hmax = 0.2,
  plot_it = FALSE,
  ask = plot_it,
  clust = c("rt", "sp.rt"),
  sigma.t = NULL,
  sigma.r = 0.5,
  deepSplit = FALSE,
  verbose = FALSE,
  out = c("data.frame", "matrix")
)
```

Arguments

peak_list	A peak_list object created by get_peaks, containing a nested list of peak tables: the first level is the sample, and the second level is the spectral wavelength. Every component is described by a data.frame where every row is one peak, and the columns contain information on various peak parameters.
chrom_list	A list of chromatographic matrices.
response	Indicates whether peak area or peak height is to be used as intensity measure. Defaults to area setting.
use.cor	Logical. Indicates whether to use corrected retention times (rt.cor column) or raw retention times (rt column). Unless otherwise specified, the rt.cor column will be used by default if it exists in the provided peak_list.
hmax	Height at which the complete linkage dendrogram will be cut. Can be interpreted as the maximal inter-cluster retention time difference.
plot_it	Logical. If TRUE, for every component a stripplot will be shown indicating the clustering.
ask	Logical. Ask before showing new plot? Defaults to TRUE.
clust	Specify whether to perform hierarchical clustering based on spectral similarity and retention time (sp.rt) or retention time alone (rt). Defaults to rt. The sp.rt option is experimental and should be used with caution.
sigma.t	Width of gaussian in retention time distance function. Controls weight given to retention time if sp.rt is selected.
sigma.r	Width of gaussian in spectral similarity function. Controls weight given to spectral correlation if sp.rt is selected.
deepSplit	Logical. Controls sensitivity to cluster splitting. If TRUE, function will return more smaller clusters. See documentation for cutreeDynamic for additional information.

get_peaktable 23

verbose Logical. Whether to print warning when combining peaks into single time win-

dow. Defaults to FALSE.

out Specify data. frame or matrix as output. Defaults to data. frame.

Details

The function performs a complete linkage clustering of retention times across all samples, and cuts at a height given by the user (which can be understood as the maximal inter-cluster retention time difference) in the simple case based on retention times. Clustering can also incorporate information about spectral similarity using a distance function adapted from Broeckling et al., 2014:

latexascii

If two peaks from the same sample are assigned to the same cluster, a warning message is printed to the console. These warnings can usually be ignored, but one could also consider reducing the hmax variable. However, this may lead to splitting of peaks across multiple clusters. Another option is to filter the peaks by intensity to remove small features.

Value

The function returns an S3 peak_table object, containing the following elements:

- tab: the peak table itself a data-frame of intensities in a sample x peak configuration.
- pk_meta: A data.frame containing peak meta-data (e.g. the spectral component, peak number, and average retention time).
- sample_meta: A data frame of sample meta-data. Must be added using attach_metadata).
- ref_spectra: A data.frame of reference spectra (in a wavelength x peak configuration). Must be added using attach_ref_spectra
- args: A vector of arguments given to get_peaktable to generate the peak table.

Note

This function is adapted from getPeakTable function in the alsace package by Ron Wehrens.

Author(s)

Ethan Bass

References

- Broeckling, C. D., Afsar F.A., Neumann S., Ben-Hur A., and Prenni J.E. 2014. RAM-Clust: A Novel Feature Clustering Method Enables Spectral-Matching-Based Annotation for Metabolomics Data. *Anal. Chem.* 86:6812-6817. doi:10.1021/ac501530d.
- Wehrens, R., Carvalho, E., Fraser, P.D. 2015. Metabolite profiling in LC–DAD using multivariate curve resolution: the alsace package for R. *Metabolomics* 11:143-154. doi:10.1007/s1130601406835.

See Also

attach_ref_spectra attach_metadata

24 merge_peaks

Examples

```
data(Sa_pr)
pks <- get_peaks(Sa_pr, lambdas = c('210'))
get_peaktable(pks, response = "area")</pre>
```

merge_peaks

Merge split peaks

Description

Utility function to combine split peaks into a single column of the peak table.

Usage

```
merge_peaks(peak_table, peaks, method = c("max", "sum"))
```

Arguments

peak_table Peak table from get_peaktable.

peaks A vector specifying the names or indices of peaks to be merged.

method Method to merge peaks. Either max to select the largest peak from each sample

or sum to sum the peaks together.

Details

Merges the specified peaks in peak table, by selecting the largest value from each column if method is "max". If method is "sum", merges peak by summing their values.

Value

A peak table similar to the input peak table, but where the specified columns are combined.

Author(s)

Ethan Bass

Examples

```
data(pk_tab)
pk_tab <- merge_peaks(peak_table = pk_tab, peaks=c("V10","V11"))</pre>
```

mirror_plot 25

mirror_plot

Make mirror plot from peak table.

Description

Plots chromatograms as a mirror plot.

Usage

```
mirror_plot(
    x,
    chrom_list,
    lambdas = NULL,
    var,
    subset = NULL,
    print_legend = TRUE,
    legend_txt = NULL,
    legend_pos = "topright",
    legend_size = 1,
    mirror = TRUE,
    xlim = NULL,
    ylim = NULL,
    ...
)
```

Arguments

x	The peak table (output from get_peaktable function).
chrom_list	A list of chromatograms in matrix format (timepoints x wavelengths). If no argument is provided here, the function will try to find the chrom_list object used to create the peak_table.
lambdas	The wavelength you wish to plot the traces at.
var	Variable to index chromatograms.
subset	Character vector specifying levels to use (if more than 2 levels are present in var).
print_legend	Logical. Whether to print legend. Defaults to TRUE.
legend_txt	Character vector containing labels for legend.
legend_pos	Legend position.
legend_size	Legend size (cex argument). Default is 1.
mirror	Logical. Whether to plot as mirror or stacked plots. Defaults to TRUE.
xlim	Numerical vector specifying limits for x axis.
ylim	Numerical vector specifying limits for y axis.
	Additional arguments to matplot function.

26 normalize_data

Details

Can be used to confirm the identity of a peak or check that a particular column in the peak table represents a single compound. Can also be used to create simple box-plots to examine the distribution of a peak with respect to variables defined in sample metadata.

Value

No return value, called for side effects.

Side effects

If mirror_plot is TRUE, plots a mirror plot comparing two treatments defined by var and subset (if more than two factors are present in var). Otherwise, if mirror_plot is FALSE, the treatments are plotted in two separate panes.

Author(s)

Ethan Bass

Examples

```
data(Sa_warp)
data(pk_tab)
path <- system.file("extdata", "Sa_metadata.csv", package = "chromatographR")
meta <- read.csv(path)
pk_tab <- attach_metadata(peak_table = pk_tab, metadata = meta, column="vial")
mirror_plot(pk_tab,lambdas = c("210","260"), var = "trt", mirror = TRUE,
    col = c("green","blue"))</pre>
```

normalize_data

Normalize peak table or chromatograms

Description

Normalizes peak table or list of chromatograms by specified column in sample metadata. Metadata must first be attached to peak_table using attach_metadata.

Usage

```
normalize_data(
  peak_table,
  column,
  chrom_list,
  what = c("peak_table", "chrom_list"),
  by = c("meta", "peak")
)
```

pk_tab 27

Arguments

peak_table A 'peak_table' object

column The name of the column containing the weights.

chrom_list List of chromatograms for normalization. The samples must be in same order as

the peak_table. If no argument is provided here, the function will try to find the

chrom_list object used to create the provided peak_table.

what 'peak_table' or list of chromatograms ('chrom_list').

by Whether to normalize by a column in sample metadata (meta) or by a column in

the peak table itself (peak).

Value

A peak_table object where the peaks are normalized by the mass of each sample.

Author(s)

Ethan Bass

See Also

```
get_peaktable attach_metadata
```

Examples

```
data(pk_tab)
path <- system.file("extdata", "Sa_metadata.csv", package = "chromatographR")
meta <- read.csv(path)
pk_tab <- attach_metadata(peak_table = pk_tab, metadata = meta, column="vial")
norm <- normalize_data(pk_tab, "mass", what = "peak_table")</pre>
```

pk_tab

Goldenrod peak table

Description

Peak table generated from exemplary goldenrod root extracts.

Usage

```
data(pk_tab)
```

Format

A peak_table object.

28 plot.peak_list

plot.peak_list

Plot fitted peak shapes.

Description

Visually assess integration accuracy by plotting fitted peaks over trace.

Usage

```
## S3 method for class 'peak_list'
plot(
  Х,
  . . . ,
  chrom_list,
  idx = 1,
  lambda = NULL,
  points = FALSE,
  ticks = FALSE,
  a = 0.5,
  color = NULL,
  cex.points = 0.5,
  numbers = FALSE,
  cex.font = 0.5,
  y.offset = 25,
  plot_purity = FALSE,
  res,
  index = NULL
```

Arguments

X	A peak_list object. Output from the get_peaks function.
	Additional arguments to main plot function.
chrom_list	List of chromatograms (retention time x wavelength matrices)
idx	Index or name of chromatogram to be plotted.
lambda	Wavelength for plotting.
points	Logical. If TRUE, plot peak maxima. Defaults to FALSE.
ticks	Logical. If TRUE, mark beginning and end of each peak. Defaults to FALSE.
а	Alpha parameter controlling the transparency of fitted shapes.
color	The color of the fitted shapes.
cex.points	Size of points. Defaults to 0.5
numbers	Whether to number peaks. Defaults to FALSE.
cex.font	Font size if peaks are numbered. Defaults to 0.5.

plot.peak_table 29

y.offset Y offset for peak numbers. Defaults to 25.
plot_purity Whether to add visualization of peak purity.

res time resolution for peak fitting

index This argument is deprecated. Please use idx instead.

Value

No return value, called for side effects.

Side effects

Plots a chromatographic trace from the specified chromatogram (chr) at the specified wavelength (lambda) with fitted peak shapes from the provided peak_list drawn underneath the curve.

Author(s)

Ethan Bass

See Also

```
get_peaks
```

plot.peak_table

Plot spectrum from peak table

Description

Plots the trace and/or spectrum for a given peak in peak table.

Usage

```
## S3 method for class 'peak_table'
plot(
  х,
  loc,
  chrom_list,
  what = "peak",
  idx = "max",
  lambda = "max",
  plot_spectrum = TRUE,
  plot_trace = TRUE,
  box_plot = FALSE,
  vars = NULL,
  spectrum_labels = TRUE,
  scale_spectrum = FALSE,
  export_spectrum = FALSE,
  verbose = TRUE,
```

30 plot.peak_table

```
engine = c("base", "plotly", "ggplot"),
chr = NULL,
...
)
```

Arguments

x The peak table (output from get_peaktable function).

loc A vector specifying the peak(s) or retention time(s) that you wish to plot.

chrom_list A list of chromatograms in matrix format (timepoints x wavelengths). If no

argument is provided here, the function will try to find the chrom_list object

used to create the peak_table.

what What to look for. Either peak to extract spectral information for a certain peak,

rt to scan by retention time, or click to manually select retention time by

clicking on the chromatogram. Defaults to peak.

idx Numerical index of chromatogram you wish to plot; "max" to plot the chro-

matogram with the largest signal; or "all" to plot spectra for all chromatograms.

lambda The wavelength you wish to plot the trace at (if plot_chrom is TRUE and/or the

wavelength to be used for the determination of signal abundance.

plot_spectrum Logical. If TRUE, plots the spectrum of the chosen peak. Defaults to TRUE.

plot_trace Logical. If TRUE, plots the trace of the chosen peak at lambda. Defaults to

TRUE.

box_plot Logical. If TRUE, plots box plot using categories defined by vars.

vars Independent variables for boxplot. Righthand side of formula.

spectrum_labels

Logical. If TRUE, plots labels on maxima in spectral plot. Defaults to TRUE.

scale_spectrum Logical. If TRUE, scales spectrum to unit height. Defaults to FALSE.

export_spectrum

Logical. If TRUE, exports spectrum to console. Defaults to FALSE.

verbose Logical. If TRUE, prints verbose output to console. Defaults to TRUE.

engine Which plotting engine to use: either base or plotly.

chr Deprecated. Please use idx instead.
... Additional arguments to boxplot.

Details

Can be used to confirm the identity of a peak or check that a particular column in the peak table represents a single compound. Can also be used to create simple box-plots to examine the distribution of a peak with respect to variables defined in sample metadata.

Value

If export_spectrum is TRUE, returns the spectrum as a data.frame with wavelengths as rows and columns encoding the absorbance (or normalized absorbance, if scale_spectrum is TRUE) for the specified sample(s). Otherwise, there is no return value.

plot.ptw_list 31

Side effects

If plot_trace is TRUE, plots the chromatographic trace of the specified chromatogram (chr), at the specified wavelength (lambda) with a dotted red line to indicate the retention time given by loc. The trace is a single column from the chromatographic matrix.

If plot_spectrum is TRUE, plots the spectrum for the specified chromatogram at the specified retention time. The spectrum is a single row from the chromatographic matrix.

If box_plot is TRUE, produces a boxplot from the specified peak with groups provided by vars.

Author(s)

Ethan Bass

plot.ptw_list

Plot PTW alignments

Description

Plot PTW alignments

Usage

```
## S3 method for class 'ptw_list'
plot(x, lambdas, legend = TRUE, ...)
```

Arguments

A ptw_list object created by correct_rt.

lambdas Which lambdas to plot.

legend Logical. Whether to label the plots.

... Additional arguments to matplot.

Author(s)

Ethan Bass

32 plot_all_spectra

plot_all_spectra

Plot all spectra for chosen peak.

Description

Plot multiple for a given peak in peak table. Wrapper for plot_spectrum.

Usage

```
plot_all_spectra(
    peak,
    peak_table,
    chrom_list,
    idx = "all",
    chrs = NULL,
    engine = c("base", "ggplot2", "plotly"),
    plot_spectrum = TRUE,
    export_spectrum = TRUE,
    scale_spectrum = TRUE,
    overlapping = TRUE,
    verbose = FALSE,
    what = c("peak", "rt", "idx"),
    ...
)
```

Arguments

The name of a peak to plot (in character format) peak peak_table The peak table (output from get_peaktable function) chrom_list A list of chromatograms in matrix format (timepoints x components). If no argument is provided here, the function will try to find the chrom_list object used to create the provided peak_table. idx Vector of chromatograms to plot. chrs Deprecated. Please use idx instead. Which plotting engine to use: base, ggplot2, or plotly. engine plot_spectrum Logical. If TRUE, plots the spectrum of the chosen peak. export_spectrum Logical. If TRUE, exports spectrum to console. Defaults to FALSE. scale_spectrum Logical. If TRUE, scales spectrum to unit height. overlapping Logical. If TRUE, plot spectra in single plot. verbose Logical. If TRUE, prints verbose output to console. What to look for. Either peak to extract spectral information for a certain peak, what rt to scan by retention time, or idx to scan by numeric index. Defaults to "peak" Additional arguments to plot_spectrum.

plot_chroms 33

Value

If export_spectrum is TRUE, returns the spectra as a data.frame with wavelengths as rows and one column for each sample in the chrom_list encoding the absorbance (or normalized absorbance, if scale_spectrum is TRUE) at each wavelength. Otherwise, there is no return value.

Side effects

If plot_spectrum is TRUE, plots the spectra for the specified chromatogram (chr) of the given peak. The spectrum is a single row from the chromatographic matrix.

Author(s)

Ethan Bass

See Also

```
plot_spectrum
```

Examples

```
data(Sa_warp)
pks <- get_peaks(Sa_warp, lambda="220")
pk_tab <- get_peaktable(pks)
plot_all_spectra(peak="V13", peak_table = pk_tab, overlapping=TRUE)</pre>
```

plot_chroms

Plot traces from list of chromatograms.

Description

Plots the specified traces from a list of chromatograms.

Usage

```
plot_chroms(
    x,
    lambdas,
    idx,
    xlim,
    ylim,
    xlab = "",
    ylab = "Absorbance",
    engine = c("base", "ggplot", "plotly"),
    linewidth = 1,
    show_legend = TRUE,
    legend_position = "topright",
    ...
)
```

34 plot_spectrum

Arguments

x	A list of chromatograms in matrix format (timepoints x wavelengths).
lambdas	The wavelength(s) you wish to plot the trace at.
idx	A vector representing the names or numerical indices of the chromatograms to plot.
xlim	Range of x axis.
ylim	Range of y axis.
xlab	X label.
ylab	Y label. Defaults to "Absorbance".
engine	Plotting engine. Either base (matplot), plotly, or ggplot2-package.
linewidth	Line width.
show_legend	Logical. Whether to display legend or not. Defaults to TRUE.
legend_position	
	Position of legend.
	Additional arguments to plotting function specified by engine.

Value

No return value, called for side effects.

Side effects

Plots the traces of the specified chromatograms idx at the specified wavelengths lambdas. Plots can be produced using base graphics, ggplot2, or plotly, according to the value of engine.

Author(s)

Ethan Bass

Examples

```
data(Sa_pr)
plot_chroms(Sa_pr, idx=1:2, lambdas=c(210))
```

plot_spectrum Plot spectrum from peak table

Description

Plots the trace and/or spectrum for a given peak in peak.table object, or plots the spectrum a particular retention time for a given chromatogram.

plot_spectrum 35

Usage

```
plot_spectrum(
  loc = NULL,
  peak_table,
  chrom_list,
  idx = "max",
  lambda = "max"
  plot_spectrum = TRUE,
  plot_trace = TRUE,
  spectrum_labels = TRUE,
  scale_spectrum = FALSE,
  export_spectrum = FALSE,
  verbose = TRUE,
  what = c("peak", "rt", "idx", "click"),
  engine = c("base", "plotly", "ggplot2"),
  chr = NULL,
)
```

Arguments

loc The name of the peak or retention time for which you wish to extract spectral

data.

peak_table The peak table (output from get_peaktable).

chrom_list A list of chromatograms in matrix format (timepoints x wavelengths). If no

argument is provided here, the function will try to find the chrom_list object

used to create the provided peak_table.

idx Numerical index of chromatogram you wish to plot, or "max" to automatically

plot the chromatogram with the largest signal.

lambda The wavelength you wish to plot the trace at if plot_trace == TRUE and/or the

wavelength to be used for the determination of signal abundance.

plot_spectrum Logical. If TRUE, plots the spectrum of the chosen peak. Defaults to TRUE.

plot_trace Logical. If TRUE, plots the trace of the chosen peak at lambda. Defaults to

TRUE.

spectrum_labels

Logical. If TRUE, plots labels on maxima in spectral plot. Defaults to TRUE.

scale_spectrum Logical. If TRUE, scales spectrum to unit height. Defaults to FALSE.

export_spectrum

Logical. If TRUE, exports spectrum to console. Defaults to FALSE.

verbose Logical. If TRUE, prints verbose output to console. Defaults to TRUE.

what What to look for. Either peak to extract spectral information for a certain peak,

rt to scan by retention time, idx to scan by numeric index, or click to manually select retention time by clicking on the chromatogram. Defaults to "peak" mode.

engine Which plotting engine to use: base, ggplot2, or plotly.

chr Deprecated. Please use idx instead.

... Additional arguments.

36 preprocess

Details

Can be used to confirm the identity of a peak or check that a particular column in the peak table represents a single compound. Retention times can also be selected by clicking on the plotted trace if what == 'click'.

Value

If export_spectrum is TRUE, returns the spectrum as a data.frame with wavelengths as rows and a single column encoding the absorbance (or normalized absorbance, if scale_spectrum is TRUE) at each wavelength. If export_spectrum is FALSE, the output depends on the plotting engine. If engine == "plotly", returns a plotly object containing the specified plots. Otherwise, if engine == "base", there is no return value.

Side effects

- If plot_trace is TRUE, plots the chromatographic trace of the specified chromatogram (chr), at the specified wavelength (lambda) with a dotted red line to indicate the retention time given by loc. The trace is a single column from the chromatographic matrix.
- If plot_spectrum is TRUE, plots the spectrum for the specified chromatogram at the specified retention time. The spectrum is a single row from the chromatographic matrix.

Author(s)

Ethan Bass

Examples

```
data(Sa)
pks <- get_peaks(Sa, lambda="220.00000")
pk_tab <- get_peaktable(pks)
oldpar <- par(no.readonly = TRUE)
par(mfrow=c(2,1))
plot_spectrum(loc = "V10", peak_table = pk_tab, what="peak")
par(oldpar)</pre>
```

preprocess

Preprocess time/wavelength data

Description

Standard pre-processing of response matrices, consisting of a time axis and a spectral axis (e.g. HPLC-DAD/UV data). For smooth data, like UV-VIS data, the size of the matrix can be reduced by interpolation. By default, the data are baseline-corrected in the time direction (baseline.corr) and smoothed in the spectral dimension using cubic smoothing splines (smooth.spline.

preprocess 37

Usage

```
preprocess(
   X,
   dim1,
   dim2,
   remove.time.baseline = TRUE,
   spec.smooth = TRUE,
   maxI = NULL,
   parallel = NULL,
   interpolate_rows = TRUE,
   interpolate_cols = TRUE,
   mc.cores,
   cl = 2,
   show_progress = NULL,
   ...
)
```

Arguments

A numerical data matrix, or list of data matrices. Missing values are not al-

lowed. If rownames or colnames attributes are used, they should be numerical

and signify time points and wavelengths, respectively.

dim1 A new, usually shorter, set of time points (numerical). The range of these should

not exceed the range of the original time points.

dim2 A new, usually shorter, set of wavelengths (numerical). The range of these

should not exceed the range of the original wavelengths.

remove.time.baseline

Logical, indicating whether baseline correction should be done in the time di-

rection, according to baseline.corr. Default is TRUE.

spec. smooth Logical, indicating whether smoothing should be done in the spectral direction,

according to smooth.spline. Default is TRUE.

maxI if given, the maximum intensity in the matrix is set to this value.

parallel Logical, indicating whether to use parallel processing. Defaults to TRUE (unless

you're on Windows).

interpolate_rows

Logical. Whether to interpolate along the time axis (dim1). Defaults to TRUE.

interpolate_cols

Logical. Whether to interpolate along the spectral axis (dim2). Defaults to

TRUE.

mc.cores How many cores to use for parallel processing. Defaults to 2. This argument

has been deprecated and replaces with cl.

cl Argument to pblapply or mclapply. Either an integer specifying the number of

clusters to use for parallel processing or a cluster object created by makeCluster.

Defaults to 2. On Windows integer values will be ignored.

show_progress Logical. Whether to show progress bar. Defaults to TRUE if pbapply is installed.

.. Further optional arguments to baseline.corr.

38 reshape_chroms

Value

The function returns the preprocessed data matrix (or list of matrices), with row names and column names indicating the time points and wavelengths, respectively.

Note

Adapted from the preprocess function in the alsace package by Ron Wehrens.

Author(s)

Ethan Bass

References

- Wehrens, R., Bloemberg, T.G., and Eilers P.H.C. 2015. Fast parametric time warping of peak lists. *Bioinformatics* **31**:3063-3065. doi:10.1093/bioinformatics/btv299.
- Wehrens, R., Carvalho, E., Fraser, P.D. 2015. Metabolite profiling in LC–DAD using multi-variate curve resolution: the alsace package for R. *Metabolomics* 11:1:143-154. doi:10.1007/s1130601406835.

Examples

```
data(Sa) new.ts <- seq(10,18.66,by=.01) # choose time-points new.lambdas <- seq(200, 318, by = 2) # choose wavelengths Sa_pr <- preprocess(Sa[[1]], dim1 = new.ts, dim2 = new.lambdas)
```

reshape_chroms

Reshape chromatograms Reshapes a list of chromatograms from wide to long format.

Description

Reshape chromatograms Reshapes a list of chromatograms from wide to long format.

Usage

```
reshape_chroms(x, idx, sample_var = "sample", lambdas = NULL, rts = NULL)
```

Arguments

x A list of chromatographic matrices in wide format.

idx Indices of chromatograms to convert

sample_var String with name of new column containing sample IDs.

lambdas Vector specifying wavelength(s) to include.

rts Vector specifying retention times to include.

reshape_peaktable 39

Value

A list of chromatographic matrices in long format.

Author(s)

Ethan Bass

reshape_peaktable

Reshapes peak table from wide to long format

Description

Reshapes peak table from wide to long format

Usage

```
reshape_peaktable(x, peaks, metadata, fixed_levels = TRUE)
```

Arguments

x A peak_table object.

peaks A character vector specifying the peaks to include. If the character vector is

named, the names of the vector elements will be used in place of the original

peak names.

metadata A character vector specifying the metadata fields to include.

fixed_levels Logical. Whether to fix factor levels of features in the order provided. Defaults

to TRUE.

Value

A data.frame containing the information for the specified peaks in long format.

Author(s)

Ethan Bass

40 Sa_pr

Sa

Raw goldenrod root chromatograms

Description

A list of four HPLC-DAD data matrices of *Solidago altissima* roots extracted in 90% methanol. Retention times are stored in rows and wavelengths are stored in columns.

Usage

data(Sa)

Format

A list of four matrices (1301 times x 60 wavelengths).

Sa_pr

Preprocessed goldenrod root chromatograms

Description

A list of four pre-processed HPLC-DAD chromatograms derived from the raw data stored in Sa. Retention times are stored in rows and wavelengths are stored in columns. The time axis is compressed to save space and processing time so the data are a little choppy.

Usage

```
data(Sa_pr)
```

Format

A list of four pre-processed matrices (434 retention times x 60 wavelengths).

Sa_warp 41

Sa_warp

Warped goldenrod root chromatograms.

Description

A list of four pre-processed and warped goldenrod root chromatograms derived from the raw data stored in Sa.

Usage

```
data(Sa_warp)
```

Format

A list of four pre-processed and warped matrices (434 times x 60 wavelengths).

scan_chrom

Plot spectra by clicking on the chromatogram

Description

Plot spectra by clicking on the chromatogram

Usage

```
scan_chrom(
  chrom_list,
  idx,
  lambda,
  plot_spectrum = TRUE,
  peak_table = NULL,
  scale_spectrum = FALSE,
  spectrum_labels = TRUE,
  export_spectrum = FALSE,
  chr = NULL,
  ...
)
```

Arguments

chrom_list A list of chromatograms in matrix format (timepoints x wavelengths). If no

argument is provided here, the function will try to find the chrom_list object

used to create the provided peak_table.

idx Numerical index of chromatogram you wish to plot.

lambda The wavelength to plot the trace at.

42 subset.peak_table

```
plot_spectrum Logical. Whether to plot the spectrum or not.

peak_table The peak table (output from get_peaktable function).

scale_spectrum Logical. If TRUE, scales spectrum to unit height. Defaults to FALSE.

spectrum_labels

Logical. If TRUE, plots labels on maxima in spectral plot. Defaults to TRUE.

export_spectrum

Logical. If TRUE, exports spectrum to console. Defaults to FALSE.

chr Deprecated. Please use idx instead.

... Additional arguments.
```

Value

If export_spectrum is TRUE, returns the spectrum as a data.frame with wavelengths as rows and a single column encoding the absorbance (or normalized absorbance, if scale_spectrum is TRUE) at each wavelength. Otherwise, there is no return value.

Side effects

Plots a chromatographic trace from the specified chromatogram (chr), at the specified wavelength (lambda) with a dotted red line to indicate the user-selected retention time. The trace is a single column from the chromatographic matrix.

If plot_spectrum is TRUE, plots the spectrum for the specified chromatogram at the user-specified retention time. The spectrum is a single

Author(s)

Ethan Bass

Examples

```
data(Sa_pr)
scan_chrom(Sa_pr, lambda = "210", idx = 2, export_spectrum = TRUE)
```

subset.peak_table

Subset peak table Return subset of peak_table object.

Description

Subset peak table Return subset of peak_table object.

Usage

```
## S3 method for class 'peak_table'
subset(x, subset, select, drop = FALSE)
```

write_peaktable 43

Arguments

X	A peak_table object
subset	Logical expression indicating rows (samples) to keep from peak_table; missing values are taken as false.
select	Logical expression indicating columns (peaks) to select from peak_table.
deces	Landard December 2nd Control of the

drop Logical. Passed to indexing operator.

Value

A peak_table object with samples specified by subset and peaks specified by select.

Author(s)

Ethan Bass

write_peaktable

Export peak table

Description

Export peak table

Usage

```
write_peaktable(
  peak_table,
  path,
  filename = "peak_table",
  format = c("csv", "xlsx"),
  what = c("tab", "pk_meta", "sample_meta", "ref_spectra", "args")
)
```

Arguments

peak_table Peak table object from get_peaktable.

path Path to write file.

filename File name. Defaults to "peak_table".

format File format to export. Either csv or xlsx.

what Which elements of the peak_table to export.

Value

No return value. The function is called for its side effects.

44 write_peaktable

Side effects

Exports peak_table object as .csv or .xlsx file according to the value of format.

Examples

```
data(pk_tab)
path_out = tempdir()
write_peaktable(pk_tab, path = path_out, what = c("tab"))
```

Index

* Visualization	matplot, 25, 31, 34
<pre>boxplot.peak_table, 6</pre>	mclapply, 12, 20, 37
mirror_plot, 25	merge_peaks, 24
plot.peak_list, 28	mirror_plot, 25
plot.peak_table, 29	_,
plot_chroms, 33	nlsLM, <i>17</i>
* data	normalize_data,4,26
pk_tab, 27	
Sa, 40	pbapply, <i>12</i> , <i>19</i> , <i>37</i>
Sa_pr, 40	pblapply, <i>12</i> , <i>20</i> , <i>37</i>
Sa_warp, 41	pk_tab, 27
54_Hai p, 11	plot.peak_list,28
attach_metadata, 4, 23, 26, 27	plot.peak_table, 29
attach_ref_spectra, 5, 7, 23	plot.ptw_list, 31
	plot_all_spectra, 32
baseline.corr, 36, 37	plot_chroms, 33
boxplot, 6, 30, 31	plot_spectrum, 32, 33, 34
boxplot.peak_table, 6	plotly, 34
	preprocess, <i>16</i> , 36
chromatographR	ptw, 9, 10, 12
(chromatographR-package), 3	pvclust, 7
chromatographR-package, 3	
cluster_spectra, 6	reshape_chroms, 38
<pre>combine_peaks, 8</pre>	reshape_peaktable, 39
correct_peaks, 9, 12	
correct_rt, 10, 10, 31	Sa, 40
cutreeDynamic, 22	Sa_pr, 40
	Sa_warp,41
dilation, 11	scan_chrom, 41
	smooth.spline, 36, 37
filter_peaks, 13, 14	<pre>subset.peak_table, 42</pre>
filter_peaktable, 13, 14	
find_peaks, 15, 18, 20, 21	VPdtw, <i>10–12</i>
fit_peaks, <i>16</i> , 17, <i>18</i> – <i>21</i>	
	write_peaktable,43
get_peaks, 5, 9, 10, 13, 16, 18, 19, 22, 29	
get_peaktable, 4, 5, 7, 9, 14, 21, 23–25, 27,	
30, 32, 35, 42, 43	
get_purity, 18	
makeCluster, <i>12</i> , <i>20</i> , <i>37</i>	